Advancements in artificial intelligence promise efficiency gains for financial institutions. AI-powered applications can revolutionize an organization’s risk management, fraud detection, compliance monitoring, and other processes. Financial services companies have smart data scientists and good infrastructure needed for deploying AI. But their ability to rapidly develop and deploy AI applications is hampered by several unique challenges.
Takeaways from MLSys Seminars with Chip HuyenIn November, I had the opportunity to come back to Stanford to participate in MLSys Seminars, a series about Machine Learning Systems. It was great to see the growing interest of the academic community in building practical AI applications. Here is a recording of the talk.The talk was originally about the principles of good…
We love meeting people in the data science and machine learning community. Here are a few upcoming events where you can meet Snorkelers.
There’s a lot of excitement about the potential for AI to improve healthcare. This is driven by compelling advances across a wide range of applications including drug discovery, radiology, pathology, electronic medical record (EMR) intelligence, clinical trials, and more. There are also many challenges for development and deployment of AI for healthcare.