On the heels of the second annual Future of Data-Centric AI event, we’re energized by what we learned from data scientists, machine learning engineers, and AI leaders who are adopting data-centric approaches to accelerate AI success. The Snorkel Flow platform provides these teams with a seamless workflow across training data creation, model training, and analysis—the scaffolding to make data-centric AI…
Labeling functions are fundamental building blocks of programmatic labeling that encode diverse sources of weak labeling signals to produce high-quality labeled data at scale. Let’s start with the core motivation for labeling functions: over time, every major commercial organization and government agency builds various valuable, often bespoke knowledge resources. These resources include employee expertise, wikis and ontologies, business logic, and…
Latest features and platform improvements for Snorkel Flow 2022 is off to a strong start as we continue to make the benefits of data-centric AI more accessible to the enterprise. With this release, we’re further empowering AI/ML teams to drive rapid, analysis-driven training data iteration and development. Improvements include streamlined data exploration and programmatic labeling workflows, integrated active learning and AutoML,…
We’re excited to announce the Q4 2021 LTS release of Snorkel Flow, our data-centric AI development platform powered by programmatic labeling. This latest release introduces a number of new product capabilities and enhancements, from a streamlined programmatic data development interface, to enhanced auto-suggest for labeling functions, to new machine learning capabilities like AutoML, to significant performance enhancements for PDF data…
The Snorkel AI founding team started the Snorkel Research Project at Stanford AI Lab in 2015, where we set out to explore a higher-level interface to machine learning through training data. This project was sponsored by Google, Intel, DARPA, and several other leading organizations and the research was represented in over 40 academic conferences such as ACL, NeurIPS, Nature and…
We started the Snorkel project at the Stanford AI lab in 2015 around two core hypotheses:
Over the past year, we’ve worked hard to deliver Snorkel Flow, the first AI platform to provide all the power of machine learning without the pains of hand-labeling. Snorkel Flow lets you label data programmatically, train models flexibly, improve performance iteratively, and deploy AI applications quickly. We are incredibly proud of the value that our customers, including two of the…
AI is already transforming the business of government. But the positive impacts of this transformation, from increasing the efficiency of public services to enhancing the effectiveness of tax dollars, are still in the earliest stages. Public sector organizations generally have access to the same talent, software models, and hardware infrastructure as any private sector company, but they face a number of relatively unique practical challenges that hinder their operationalization of AI.
We are inventing a new way to build enterprise AI applications. Taking a data-centric approach, we are making machine learning iterable, faster to deploy, and ultimately more practical.That is a fantastic opportunity, but it also presents one of our biggest challenges – figuring out how to bridge the gap between developers at the vanguard of machine learning and business leaders…
Today I’m excited to announce Snorkel AI’s launch out of stealth! Snorkel AI, which spun out of the Stanford AI Lab in 2019, was founded on two simple premises: first, that the labeled training data machine learning models learn from is increasingly what determines the success or failure of AI applications. And second, that we can do much better than labeling this…